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Universal Incommensurate Structures 

A. E. Jacobs 1 and David Mukamel  2 

Received July 14, 1989 

Certain phase transitions in quasiperiodic systems are characterized by universal 
structures. In these cases the functional form of the order parameter correspond- 
ing to the modulated phase, P(r), is determined by the symmetry properties of 
the system and is independent of the details: of the associated Landau-Ginzburg 
model. Here we consider a simple one-dimensional XY-like model correspond- 
ing to this type of phase transition. The universal modulated structure of this 
model is calculated numerically at various points along the critical line. 
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1. I N T R O D U C T I O N  

Incommensurate or quasiperiodic structures occur in a large variety of 
physical systems. These include magnetically ordered systems with spiral- 
like or spin-density-wave structures which are incommensurate with 
the underlying lattice, (1) intercalation compounds, 3 charge-density-wave 
systems, 4 and many others. A particularly interesting class of quasiperiodic 
systems consists of quasicrystals. These newly discovered structures have 
icosahedral, decagonal, or other noncrystallographic point symmetries. (4) 
Phase transitions leading to quasiperiodic structures have been studied 
extensively in recent years. Although a complete classification of these 
transitions has not yet been carried out, it has been observed that con- 
tinuous transitions leading to incommensurate structures may be broadly 
divided into three classes (5 7): instability, nucleation, and a third, inter- 
mediate, class which has common characteristics with both of the first two. 
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Instability transitions usually take place when a disordered phase becomes 
incommensurate. For example, a transition from a paramagnetic phase to 
one with spin-density-wave (SDW) structure is of this type. The order 
parameter associated with this transition is the Fourier amplitude S(q) of 
the local spin variable S(r), where 2~/]q] is the wavelength of the 
modulated structure. The wavevector q is nonzero at the transition tem- 
perature and it varies with the temperature T in the ordered phase. Higher 
harmonics of the primary order parameter, namely S(nq) with n > l, are 
also nonzero below the transition. The magnetic structure of the ordered 
phase, and in particular the amplitudes of the higher harmonics, depend on 
the details of the Hamiltonian associated with the system. However, as the 
transition is approached from below, the amplitude ratios IS(nq)i/lS(q)l 
vanish for n >  1. Thus, at the transition, the magnetic structure of the 
SDW phase is composed of the primary order parameter, with no higher 
harmonics present. This trivial structure is universal, and is characteristic 
of the instability-type phase transitions. 

On the other hand, nucleation transitions are not associated with a 
small local order parameter. They are rather described by a condensation 
of discommensurations or domain-wall-like structures. Such transitions 
usually take place when an incommensurate structure becomes commen- 
surate. As the transition is approached, the average distance between the 
discommensurations diverges to infinity, resulting in a continuous transi- 
tion to a commensurate phase. For example, consider a spiral magnetic 
structure in an external magnetic field perpendicular to the axis of the 
spiral. As the magnetic field is increased, the spiral becomes distorted. The 
magnetic structure is then composed of large ferromagnetic domains orien- 
ted along the magnetic field, separated by domain walls in which the local 
magnetic moment undergoes a rapid 27r rotation. When the field is further 
increased, the separation between the domain walls increases, and becomes 
infinite at a critical field. At this point the structure becomes ferromagnetic, 
namely commensurate with the underlying lattice. Below the transition the 
structure is characterized by the fundamental Fourier mode S(q) and 
its harmonics. However, unlike instability transitions, the wavevector q 
vanishes at the critical point. Moreover, the ratios IS(nq)l/IS(q)l, n > 1, of 
the amplitudes of the higher harmonics to that of the fundamental one 
remain finite at the transition. This is a result of the fact that domain walls 
are localized objects. The amplitude ratios do not exhibit any universal 
features, and they depend on the details of the model under consideration. 

It has recently been pointed o u t  (7) that a third, intermediate, class of 
transitions leading to incommensurate structures may exist in certain 
systems. This class of transitions has common features with both of the first 
two. In particular, it is characterized by a small local order parameter P(q) 



Universal Incommensurate Structures 505 

as in instability transitions. However, at the transition the wavevector q 
vanishes, and the amplitude ratios [P(nq)l/tP(q)[, n > 1, remain finite, as in 
nucleation transitions. Such transitions occur when the incommensurability 
is induced by a gradient cubic term of the form p2 V- P in the correspond- 
ing Landau Ginzburg (LG) model. (7-~2~ This is in contrast with instability 
transitions which are induced by quadratic terms, such as Lifshitz terms of 
the form (P~(OPy/Qz)-Py(OPx/Oz)). It has been argued that this type 
of phase transition is characterized by nontriviaI universal structureJ 7~ In 
particular, it has been demonstrated that close to the transition point 
the amplitude ratios IP(nq)l/lP(q)[ become independent of the details of 
the LG model associated with the system. They are determined by the 
symmetry properties of the order parameter corresponding to the phase 
transition. Transitions of this type occur in quartz and in berlinite. (1316) 
These crystals exhibit structural transitions from a hexagonal/~ phase to an 
incommensurate phase, induced by a P2V.  P-type term. These transitions 
have been studied in detail in recent years. 

In this paper we consider a simple model corresponding to the inter- 
mediate-type phase transition. The model is introduced in Section 2, In 
Section 3 we present our numerical results for the universal incommen- 
surate structure associated with this model. 

2. THE M O D E L  

Consider an isotropic system undergoing a transition to a ferroelectric 
phase. Let P(r)  be the local polarization vector. The LG model associated 
with this system is 

= f d3r[ep2 + a(VP)2 + tip2 V. P + 7P 4 + 3P ~] (1) 

where, as usual c~ ~ ( T -  To) represents the deviation from the bare critical 
point To, the parameters a, ,/, and 3 are taken to be positive, and we con- 
sider terms up to sixth order in P. The symmetry of this problem is such 
that the LG model does not have a Lifshitz-type term. This, together with 
the assumption that a > 0, implies that the quadratic terms in this model 
favor ferroelectric, or commensurate, order. The incommensurability is 
induced by the gradient-cubic term/3, which leads to a phase transition of 
the intermediate type. 

The phase diagram associated with this model has been studied in 
detail. ~712) It exhibits three phases: a disordered phase in which P = 0 ,  a 
ferroelectric phase, and another phase characterized by a modulated struc- 
ture. A schematic phase diagram is given in Fig. 1. For  small /~ the phase 
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Fig. 1. A schematic phase diagram corresponding to the model (1). It exhibits disordered 
(D), ferroelectric commensurate (C), and incommensurate (I) phases. Dashed lines denote 
continuous transitions and solid lines denote first-order transitions. 

diagram exhibits a disordered phase (D) at c~> 0 and a ferroelectric, or 
commensurate ,  phase (C) at c~ < 0. The D C  transit ion is an ordinary con- 
t inuous instability transition. For  large fl the ferroelectric phase becomes 
modulated,  or  incommensura te  (I). In the case ~ = 0 the transit ion occurs 
at f12= 4~7. The DI  transit ion is of the intermediate type discussed above. 
As fi further increases above some critical value fl,, the DI  transition 
becomes first order via a tricritical point. Some features of this phase 
diagram are modified when thermal fluctuations are taken into account. In 
particular, renormalizat ion group studies of the Hamil tonian  (1) corre- 
sponding to the n-component  order  parameter  were carried out (11) in 
d =  4 - e  dimensions, e > 0. It was found that to leading order in e and for 
sufficiently small n the model  does not  possess a stable fixed point. This 
indicates that  in d = 3 the DI  and the D C  transitions may  in fact be weakly 
first order. 

In order to study the structure of the modula ted  phase near the 
DI  line, we consider the region c~ < 0 and (4e7) 1/2 </3 < fit in the parameter  
space. We introduce rescaled variables for the polarization 

p = ( _ g / y ) l / 2  o" (2a)  

and for r, 

r = x (2b) 
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In terms of these rescaled variables the Euler-Lagrange equation 
associated with the Hamiltonian (1) is 

V2a + a -  2aa 2 + 2FV(a2/2) ct(V. a)]  3c~c5 - -  - - - -  0"41~ = 0 ( 3 )  }j2 

where 2=(f12/aT) 1/2. This equation determines the structure of the 
modulated phase. Close to the DI transition line the parameter c~ is small 
and the last term in this equation may be neglected. Therefore, at the tran- 
sition, the structure of the scaled polarization ~ is determined by Eq. (3) 
with c~ = 0. This structure is universal and does not depend on the details 
of the LG model associated with the system. In particular, higher order 
terms in P and its derivatives do not affect the modulated structure close 
to the transition line, since they contribute terms to the Euler-Lagrange 
equations which scale with some positive power of c~. They may thus be 
neglected at the transition. However, the universal structure does depend 
on the parameter 2, and it varies along the DI line. This aspect of the inter- 
mediate-type transition is quite general, and is not specific to the ferro- 
electric system considered here. In any LG model corresponding to an 
intermediate-type transition the universal structure is determined by the 
terms of order four or less in the order parameter, and higher order terms 
may be neglected. The universal structure is therefore determined by 
the symmetry of the problem under consideration via the parameters (such 
as ,), in our case) which occur in the truncated LG model. The universal 
structure associated with the/?-incommensurate transition in quartz and in 
berlinite has been considered in previous studies. (~3) Unfortunately, it was 
found that the corresponding Euler-Lagrange equation has a trivial, 
harmonic-free, solution. The universal structure in this case is therefore 
composed of the fundamental harmonic, as in ordinary instability transitions. 

3. N U M E R I C A L  RESULTS 

In order to study the universal structures which may be obtained in 
intermediate-type transitions, we consider a somewhat simplified version of 
the Hamiltonian (1). We take the polarization P to be an X Y  vector, 
P = ( P .  Py), and look for one-dimensional solutions of the form P(2)- The 
Euler-Lagrange equation (3) takes the form 

d2ax day = 0 (4a) 
dy--- ~ .+ a~ - 2a2 a~ - ).a x dy 

d2ay da~ 
dy 2 + ay - 2a2ay + 2a~ ~ y  = 0 (4b) 
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2 We have integrated these equations numerically and where ~2 = ~ + ay. 
determined the modulated structure at various points along the DI line. 
This is done by first finding a periodic solution of Eq. (4) with period 2~/q, 
for some wavenumber q. The free energy associated with this solution is 
calculated, and the wavenumber q of the solution which minimizes the free 
energy is determined. This procedure is repeated for several points 
2~<2~<2, along the DIline, where ,~t=4 corresponds to the tricritical 
point. The results for the universal structure are summarized in Fig. 2. The 
corresponding wavenumber q(2) which minimizes the free energy is given 
in Fig. 3. Note that q is associated with the rescaled polarization ~(y). The 

0 " ' " "  

X=25 

~ 0 

b"-i  
2 

0 

-I/ 
2 [ ~ I Ix=2 iI 1 

2 - - ,  , , - -  , 

0 

-~ ] 
0 0 ,2  0.4 0 ,6  0.8 1.0 

Y/Ymox 

Fig. 2. The universal modulated structure at various points 2 along the DI line. Here 
Yma~ = 2rc/q, where q is the wavenumber of the modulated structure. 
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Fig. 3. 
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The wave number q of the modulated structure along the DI line. 

wavenumber corresponding to the unscaled polarization P(r) is given by 
q(-c(a) 1/2 and it vanishes in the limit c~ ~ 0. 

As is evident from Fig. 2, the universal structure is nontrivial, namely, 
it has a nonnegligible contribution from higher harmonics. This contribu- 
tion is more pronounced close to the CI transition, 2 = 2 ,  and to the 
tricritical point, 2 = 2 t. 

The modulated structure may be calculated perturbatively in the 
vicinity of the CI line, namely near 2 = 2. In this limit the wavenumber q 
approaches zero, indicating a transition to the commensurate ferroelectric 
phase. Taking 2 = 2 + e, where e > 0 is a small parameter, one finds that to 
leading order in e, Eq. (4) has a solution of the form 

1 a x = - - +  eal(y) 

q =  x/-~ q l 

where ol(y) and ~2(Y) satisfy some nonlinear coupled differential equa- 
tions. Therefore, near the CI line, the modulated structure is roughly com- 
posed of a ferroelectric ox component accompanied by a small modulated 
cry. The CI transition is of peculiar, possibly intermediate-type, nature. It 
would be interesting to study this transition in more detail. 
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